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Abstract 1 

Climate change is predicted to be one of the greatest drivers of ecological change in the 2 

coming century.  Increases in temperature over the last century have clearly been linked to 3 

shifts in species distributions. Given the magnitude of projected future climatic changes, we 4 

can expect even larger range shifts in the coming century.  These changes will, in turn, alter 5 

ecological communities and the functioning of ecosystems.  Despite the seriousness of 6 

predicted climate change, the uncertainty in climate-change projections makes it difficult for 7 

conservation managers and planners to proactively respond to climate stresses.  To address 8 

one aspect of this uncertainty, we identified predictions of faunal change for which a high 9 

level of consensus was exhibited by different climate models.  Specifically, we assessed the 10 

potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) 11 

future-climate simulations on the geographic ranges of 2,954 species of birds, mammals, and 12 

amphibians in the western hemisphere.  Eighty percent of the climate projections based on a 13 

relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the 14 

vertebrate fauna over much of North and South America.  The largest changes in fauna are 15 

predicted for the tundra, Central America, and the Andes Mountains where, assuming no 16 

dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal 17 

distributions in the future will bear little resemblance to those of today.  18 

 19 

Key words: climate change, range shifts, future projections, climate envelope models, species 20 

distributions, birds, mammals, amphibians 21 

 22 

INTRODUCTION 23 

Recent climatic changes have already caused shifts in species distributions (Parmesan 24 

2006).  In general, species have been found to be moving their ranges poleward in latitude 25 
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and upward in elevation at rates that are consistent with recent temperature increases.  26 

Because future changes in climate are projected to be even greater than those of the last 27 

century (Alley et al. 2007), they will likely produce even larger range shifts (Thomas et al. 28 

2004, Thuiller et al. 2005).  In many instances, the impacts of these range shifts will go far 29 

beyond the mere addition or subtraction of a species to or from a system.  Some range shifts 30 

will have cascading effects on community structure and the functioning of ecosystems 31 

(Lovejoy and Hannah 2005). 32 

A number of studies have projected range shifts for plants and animals in response to 33 

potential climatic changes.  Projections have been made for plants and animals in Europe 34 

(Bakkenes et al. 2002, Berry et al. 2002, Thuiller et al. 2005, Araújo et al. 2006), Africa 35 

(Midgley et al. 2002, Midgley et al. 2003, Thuiller et al. 2006), and Australia (Williams et al. 36 

2003, Meynecke 2004).  In the western hemisphere, projections have been made for animals 37 

in Mexico (Peterson et al. 2002), plants in Brazil (Siqueira and Peterson 2003), and plants in 38 

the United States (Iverson and Prasad 2001, Shafer et al. 2001).  In general, these studies 39 

conclude that many species are likely to experience relatively large changes in their 40 

distributions over the next century. 41 

Most studies that project climate-induced shifts in species ranges at continental scales 42 

use bioclimatic models.  The bioclimatic modelling approach involves building a statistical or 43 

machine-learning based model that relates the current distribution of a species to current 44 

climate and then uses this relationship to project a potential future range based on future 45 

climate projections (Pearson and Dawson 2003).  The approach has the advantage of 46 

requiring relatively little data on the specific biology of a given species and thus models can 47 

be built for large numbers of species and used over large geographic areas.  Tests of 48 

bioclimatic models using historic data indicate that these models can accurately capture shifts 49 

in species distributions (Araújo et al. 2005).  50 
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Bioclimatic models provide a useful first approximation of how the biota of a region 51 

may respond to climate change.  However, they have their limitations (Pearson and Dawson 52 

2003).  The approach does not directly model biotic interactions, dispersal, or evolution.  It 53 

also assumes that the climate variables used in the models are adequate surrogates for the 54 

factors that determine a species’ range, which may not be the case for some species.  55 

Furthermore, the predictions of the models are difficult to validate.  Ideally, bioclimatic 56 

models should be tested with completely independent datasets (Araújo et al. 2005).  In the 57 

absence of these data, estimates of model accuracy from semi-independent model-validation 58 

approaches can approximate validation estimates from more independent data sources, 59 

particularly for models that more accurately predict semi-independent data sets (Araújo et al. 60 

2005).  61 

 Despite these limitations, bioclimatic models can play a significant role in developing 62 

our understanding of the potential future effects of climate change.  Bioclimatic models 63 

should be seen as providing base-line estimates of the magnitude and the distribution of 64 

climate-induced changes in biota and not as accurate predictors of the future distributions of 65 

individual species (Pearson and Dawson 2004).  Although more complex process-based 66 

models have been built to project climate-induced shifts in vegetation types or biomes, these 67 

models also have limitations and relatively large associated uncertainties (Cramer et al. 2001, 68 

Bachelet et al. 2003).  The lack of accurate data on the biology of all but the most well-69 

studied species makes building accurate process-based models for more than a few vertebrate 70 

species unrealistic.  Even with accurate biological data, there is no guarantee that these 71 

process-based models would provide more accurate future projections (Robertson et al. 72 

2003). 73 

Range-shift predictions have typically been based on no more than seven climate-74 

change projections (Thuiller et al. 2005).  There are, however, many credible projections of 75 
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future climate, including more than 50 produced for the Intergovernmental Panel on Climate 76 

Change Fourth Assessment Report (IPCC AR4) initiative (Meehl et al. 2007).  These 77 

different projections give different estimates of future climatic changes.  Impact assessments 78 

based on a single, or even a few climate-change projections may fail to capture the range of 79 

potential future outcomes and hence provide misleading results.  Evaluations of the potential 80 

ecological effects of future climate change must take the inherent uncertainty in these climate 81 

projections into account.  82 

 Previous range-shift projections have also been limited by uncertainties in modeling 83 

approaches and overly simplistic estimates of extinction rates (Harte et al. 2004, Thuiller et 84 

al. 2004).  Here, we use a consensus-based bioclimatic modeling approach that reduces model 85 

uncertainties to assess the potential effects of 30 different future climate simulations on the 86 

ranges of 1,818 bird, 723 mammal, and 413 amphibian species in the western hemisphere.  87 

Instead of assessing extinction rates, our approach simply asks whether climatic conditions 88 

are predicted to shift so much that a species will not likely be found in a particular location 89 

(defined as a particular 50-km by 50-km grid cell) in the future and whether new areas with 90 

suitable climatic conditions will emerge.   91 

 92 

MATERIALS AND METHODS 93 

Data 94 

Current geographic ranges were based on digital range maps for 3,756 birds (Ridgely 95 

et al. 2003), 1,561 mammals (Patterson et al. 2003), and 1,616 amphibians (IUCN et al. 2004) 96 

in the western hemisphere mapped to a 50 km by 50 km resolution equal-area grid.  Only the 97 

breeding ranges of the birds were used.  Range maps depict the extent of species occurrences 98 

and as such are scale-dependent abstractions of species distributions (Hurlbert and White 99 

2005).  In general, these maps overestimate species’ occurrences and can lead to 100 
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overestimates of species richness (Hurlbert and White 2005, Hurlbert and Jetz 2007).  101 

Although the scale dependence of range maps affects patterns of species richness, it should 102 

have minimal effects on our estimates of relative faunal change.  103 

We used a 50-km grid to capture the continental-scale climate patterns that influence 104 

species distributions.  Coarser grids may fail to capture climatic conditions associated with 105 

strong elevation gradients in areas of topographic complexity, such as occur across mountain 106 

ranges.  Furthermore, coarser grids can also result in spurious extrapolations of finer-scale 107 

species distribution patterns to larger areas (Rahbek and Graves 2001, Rahbek 2005).  The 108 

50-km grid was chosen to strike a balance between the inaccuracies associated with applying 109 

a fine-resolution grid to relatively coarse resolution digital-range maps and the inaccuracies 110 

incurred by mapping climate at too coarse a resolution.  To assess the effect of a grid’s spatial 111 

resolution on the patterns of faunal change, we projected changes in species ranges at two 112 

additional, coarser grid-cell resolutions (100-km by 100-km and 200-km by 200-km).   113 

Modern climate data were created using cloud-cover data from the 30-min CRU CL 114 

1.0 (New et al. 1999) data set (1961-1990 30-year mean), temperature, precipitation, and 115 

sunshine data from the 10-min CRU CL 2.0 (New et al. 2002) data set (1961-1990 30-year 116 

mean), and monthly temperature, precipitation, and cloud-cover data from the 30-min CRU 117 

TS 2.1 (Mitchell and Jones 2005) data set (1901-2002).  We used a locally-weighted lapse-118 

rate-adjusted interpolation method to interpolate the CRU CL 1.0 and 2.0 datasets to the 50-119 

km grid of the western hemisphere.  We calculated anomalies for each month in the CRU TS 120 

2.1 dataset against a 1961-1990 30-year mean climatology created from the CRU TS 2.1 121 

1961 to 1990 monthly data.  Temperature anomalies were calculated as differences (each 122 

monthly value minus the 1961-1990 30-year mean value for the same month) and 123 

precipitation and sunshine anomalies were calculated as ratios (each monthly value divided 124 

by the 1961-1990 30-year mean value for the same month).  These anomalies were 125 
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interpolated to the 50-km grid using a geographic-distance-weighted bilinear interpolation 126 

method.  The temperature, precipitation, and sunshine anomalies were applied to the 127 

interpolated CRU CL 2.0 data on the 50-km grid to create a 1901-2002 monthly dataset of 128 

temperature, precipitation, and sunshine.  We calculated a 1961-1990 30-year mean 129 

climatology from these data to use as our modern climate dataset.   130 

We used 30 climate simulations to project potential future ranges of species for the 131 

time period of 2071-2100.  The 30 climate simulations consisted of projections from 10 132 

coupled atmosphere-ocean general circulation models (AOGCMs; Appendix A) run under 133 

three different greenhouse-gas emissions scenarios (B1, A1B, and A2).  These scenarios 134 

represent the lower, mid, and mid-high range of the IPCC Special Report on Emissions 135 

Scenarios (SRES) (Nakicenovic et al. 2000).  We chose these 30 climate simulations because 136 

they cover a broad range of future greenhouse-gas emissions scenarios and they were all 137 

produced as part of the World Climate Research Programme's (WCRP's) Coupled Model 138 

Intercomparison Project phase 3 (CMIP3), allowing us to compare results of our analyses 139 

among AOGCMs and across the three scenarios.  The future projections, along with their 140 

corresponding twentieth-century simulations, were obtained from the WCRP CMIP3 multi-141 

model archive (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php).   142 

A 1961-1990 30-year mean climatology was calculated from the monthly data in each 143 

future simulation’s corresponding twentieth century simulation.  For each future climate 144 

simulation, monthly anomalies were calculated between each month of the future simulation 145 

and the matching month in the simulated 1961-1990 30-year mean dataset.  Annual 146 

temperature anomalies were calculated as differences (future minus present) and precipitation 147 

and cloud-cover anomalies were calculated as ratios (future divided by present).  These 148 

anomalies were interpolated to the western hemisphere 50-km grid using geographic-149 

distance-weighted bilinear interpolation.  The anomalies were then applied to the 1961-1990 150 
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30-year mean CRU CL 2.0 temperature and precipitation data and the CRU CL 1.0 cloud-151 

cover data to create monthly future climate data for the period 2001-2100.  For both the CRU 152 

TS 2.1 and simulated future datasets, percent cloud cover data were converted to percent 153 

sunshine using local regression relationships between percent cloud cover and percent 154 

sunshine in the CRU CL 1.0 and 2.0 datasets. 155 

We calculated 37 bioclimatic variables (Appendix B) from both the modern and 156 

future climate data using an approach modified from Cramer and Prentice (1988).  These 157 

bioclimatic variables represent the biological mechanisms that influence the distributions of a 158 

wide range of vertebrate species.  We used mean monthly temperature (°C) and sunshine (%), 159 

total monthly precipitation (mm), and soil texture data (Global Soil Data Task 2000) to 160 

calculate the bioclimatic variables.  Modern bioclimatic variables were created using the 161 

1961-1990 30-year mean climate data and future bioclimatic variables were created using the 162 

monthly data for 2071-2100 from each of the 30 AOGCM simulations.  These monthly 163 

bioclimatic data were then averaged for the period 2071-2100 to create 30-year mean datasets 164 

for each future simulation.  For four of the 30 AOGCM simulations, data were not available 165 

for the year 2100 and thus, 29-year means (2071-2099) were calculated for these simulations.   166 

 167 

Modeling approach 168 

The modeling approach involved three steps.  First, we used bioclimatic models to 169 

relate the observed current range of each species to current climate.  Next, we used the 30 170 

different future climate projections to generate 30 potential future ranges for the 2,954 171 

species for which we were able to build the most accurate bioclimatic models (Appendix C).  172 

Finally, we summarized the projected range shifts across all species and climate-change 173 

projections. 174 
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All models were built with random forest classifiers (Breiman 2001, Cutler et al. 175 

2007).  Random forest classifiers are a model-averaging or ensemble-based approach in 176 

which multiple classification or regression tree models are built using random subsets of the 177 

data and predictor variables.  The model predictions are then combined to produce one 178 

prediction for each observation.  For each species in the study, 100 classification tree models 179 

were built.  For our western hemisphere data set, the random forest approach produced more 180 

accurate predictions of species’ current ranges than each of five other commonly used 181 

approaches (Lawler et al. 2006).  182 

Our approach involved fitting individual models to species’ current distributions by 183 

treating areas within the extent of the range maps as presences and the areas outside of the 184 

current range as absences.  As with other correlative bioclimatic models, this approach 185 

involves modeling the realized niche (sensu Hutchinson 1957) of a species (Guisan and 186 

Thuiller 2005).  Thus, the models are based not only on the climatic constraints on species’ 187 

distributions, but also on any biotic interactions, human land-use effects, historic extirpations, 188 

or other constraints on species’ fundamental niches that are evident at a coarse spatial 189 

resolution.  The climatic variables in the models act as proxies, albeit imperfect ones, for 190 

many of these other non-climatic factors.  The degree to which the models are able to 191 

accurately project species distributions in an altered, future climate depends in part on 192 

whether those proxies or relationships are similar in the future.  For some species, with 193 

ranges that are strongly determined by climatic constraints or habitat relationships that are 194 

clearly dictated by climate, the models will more accurately project range shifts.  This is 195 

likely to be the case for many species when models are applied at a coarse spatial resolution.  196 

In fact, many of the documented shifts in species distributions have been in directions and at 197 

rates that correspond directly with climatic changes (Parmesan and Yohe 2003).  For species 198 

with ranges that tend to be determined largely by interspecific interactions or, more 199 
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importantly, interspecific interactions that will change with climate change, correlative 200 

bioclimatic models will be less accurate at projecting potential range shifts. 201 

We built the models using 80% of each of the presence and absence observations for 202 

each species.  We then used the remaining 20% of the data to test the models.  In our 203 

calculations of potential faunal change, we used only those models that correctly predicted at 204 

least 80% of the presences and at least 90% of the absences in the test-data sets.  This model-205 

selection process produced models that accurately predicted the current distributions for 206 

1,818 bird, 723 mammal, and 413 amphibian species (Appendix C).   207 

To summarize the projected range shifts across all species and climate-change 208 

scenarios, we used each of the 30 climate-change projections to estimate potential faunal 209 

changes for each of the 15,323 50-km grid cells in the western hemisphere.  As climate 210 

changes, species will differ in their ability to track the change and to move into newly created 211 

suitable habitat.  We calculated potential faunal change on a cell-by-cell basis assuming no 212 

dispersal to new areas with suitable climatic conditions and conversely, assuming unlimited 213 

dispersal into new suitable areas.  The actual responses of species will likely fall between 214 

these two extremes.  For the assumption of no dispersal, we calculated “species loss” for a 215 

cell as the percentage of all modeled species currently occurring in the cell whose predicted 216 

future range did not include the cell.  Under the assumption of unlimited dispersal, we 217 

calculated “species gains” as the number of species potentially moving into a cell as a result 218 

of a projected range expansion expressed as a percentage of the current number of species in 219 

the cell.  We also calculated “species turnover,” a composite measure of both potential 220 

species losses and gains.  Turnover was calculated as the sum of all species in a cell whose 221 

predicted future range did not include the cell plus all species not in the cell whose future 222 

range did include the cell, expressed as a percentage of the number of species currently 223 

occurring in the cell.  224 
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We used a probabilistic ensemble-modeling approach to summarize the 10 predictions 225 

of faunal change for each greenhouse-gas emissions scenario by taking the 20th percentiles of 226 

the distributions of loss, gain, and turnover values for each grid cell.  These values were used 227 

to identify areas in which 80% (8 out of 10) of the climate projections for each greenhouse-228 

gas emissions scenario predicted large changes in the vertebrate fauna.  We further 229 

summarized our results for 23 of 24 major ecoregions in the western hemisphere (Appendix 230 

D).  Due to the difficulties inherent in modeling range shifts for island species, we did not 231 

summarize predictions for the West Indies ecoregion. 232 

 233 

RESULTS 234 

Eighty percent (8 out of 10) of the climate-change projections resulted in an average 235 

loss of 11% of species per grid cell across North and South America under the lower B1 236 

greenhouse-gas emissions scenario and at least 17% loss under the mid-high A2 scenario 237 

(Fig. 1a and 1c).  Several areas in the western hemisphere were consistently projected to 238 

experience large losses of the current fauna.  Eighty percent of the analyzed climate-change 239 

projections predicted at least 20% species loss under the lower B1 emissions scenario, and at 240 

least 50% loss under the mid-high A2 scenario as a result of range contractions in parts of 241 

Mexico, Central America, and the Andes Mountains (Fig. 1a and 1c).   242 

Assuming no limitations to dispersal, several areas were projected to gain new species 243 

as a result of range expansions (Fig. 1d-f).  Proportionally, the largest potential gains were 244 

projected for the high northern latitudes and for the central and northern Andes Mountains.  245 

For example, 80% of the climate projections resulted in average gains of at least 30% per grid 246 

cell in the Tundra ecoregion under the lower B1 greenhouse-gas emissions scenario and at 247 

least 57% gains under the mid-high A2 scenario (Appendix E).  In the Northern Andes 248 

ecoregion, average gains were at least 21% under the lower B1 scenario and at least 27% 249 
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under the mid-high A2 scenario.  The maximum gains in both of these regions were predicted 250 

to be well over 100% under both scenarios. 251 

Combining both potential range contractions and range expansions resulted in 252 

relatively large estimates of species turnover (Fig. 1g-i).  On average, 80% of the climate 253 

projections resulted in at least 25% turnover across all of North and South America under the 254 

lower B1 scenario and at least 38% turnover under the mid-high A2 scenario.  Again, the 255 

largest changes were projected for the Arctic tundra, Mexico, Central America, and the 256 

Andes.  On average, in the Northern Andes ecoregion, turnover was projected to be at least 257 

41% under the lower B1 emissions scenario and at least 49% under the mid-high A2 scenario 258 

(Appendix E).  At least one grid cell in each of the 23 major ecoregions in North and South 259 

America was predicted to experience at least 60% turnover under the lower B1 emissions 260 

scenario and cells in 11 of the 23 ecoregions were predicted to experience at least 100% 261 

turnover under the mid-high A2 scenario, which means the vertebrate communities in these 262 

areas would bear almost no resemblance to today’s fauna.  Species turnover estimates derived 263 

from range shifts projected on both 100-km by 100-km and 200-km by 200-km grids showed 264 

very similar patterns to those based on the 50-km by 50-km grid (Fig. 2) 265 

Both the magnitude and the pattern of predicted changes differed across taxonomic 266 

groups (Fig. 3).   In general, our results indicate that we should expect greater changes in 267 

local amphibian fauna than in either mammal or bird fauna.  Although all three taxonomic 268 

groups were predicted to experience large changes at high northern latitudes, and in the 269 

Andes, Mexico, and Central America, amphibians were uniquely predicted to also undergo a 270 

high degree of turnover in the central and eastern United States. 271 

 272 

 273 

 274 
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DISCUSSION 275 

Many of the areas predicted to experience large changes in fauna are in mountainous 276 

regions where environmental conditions vary significantly over relatively short distances and 277 

where the edges of many species’ ranges occur.  Other areas of high turnover were predicted 278 

at ecoregional boundaries such as the southern and western boundaries of the Cerrado of 279 

Brazil’s central high plains.  Several of the areas of high turnover also coincide with 280 

identified conservation priority areas.  For example, the World Wildlife Fund lists the 281 

Atlantic Rainforest of South America as one of 200 global conservation priority areas based 282 

on its unique and threatened biota (Olson and Dinerstein 1998).  Our analyses indicate that 283 

the Bahia interior and coastal forests of this region are likely to experience large changes in 284 

fauna.  The potential for large species losses does not mean that these regions should be 285 

neglected by conservation efforts, but rather that climate change may significantly limit 286 

efforts directed at retaining specific species in these regions.  287 

It is important to note that our estimates of faunal change are all reported as 288 

percentages of the number of species currently at a site.  Due to latitudinal trends in species 289 

richness, the largest changes in the absolute number of species were predicted for the tropics.  290 

Given the potential for overestimating species richness from inaccuracies in the underlying 291 

species’ range maps, we chose not to report raw species numbers.  Nonetheless, even a 292 

modest percentage of turnover in the tropics will translate into a large number of species 293 

potentially moving in or out of an area. 294 

In addition to regional differences, there are likely to be taxonomic differences in 295 

responses to climate change (Parmesan 2006).  Previous studies have predicted that 296 

amphibians will be more susceptible to climate change than birds or mammals because of 297 

their dependence on microhabitats and hydrological regimes, limited dispersal abilities 298 

(Blaustein et al. 1994), and susceptibility to diseases that may be influenced by climate 299 
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change (Pounds et al. 2006).  Our models predict substantially larger changes in amphibian 300 

fauna than in bird or mammal fauna based solely on potential future range contractions and 301 

expansions.  In combination, this multitude of projected impacts will likely exacerbate the 302 

current declines being observed across many amphibian populations (Stuart et al. 2004).  303 

Our analyses provide a conservative estimate of the future climate-driven changes in 304 

biodiversity across North and South America.  Because the approach we used does not 305 

consider interspecific interactions, it is likely that shifts in the ranges of other species and 306 

particularly in the distributions of pathogens (Pounds et al. 2006) will further alter ecological 307 

communities, although in some cases, interspecific interactions may buffer the effects of 308 

climate change (Wilmers and Getz 2005).  Our models also do not account for climate-driven 309 

changes in disturbance regimes such as fire or hydrology that may further alter habitat.  Nor 310 

do our models account for land-use change, which will potentially have even greater impacts 311 

than climate change on habitat availability for many species in the coming century (Jetz et al. 312 

2007). 313 

Much of the land in several of the areas highlighted by our analyses has already been 314 

converted to agriculture or other human land uses.  The Atlantic Forest of Brazil and the 315 

Amazon Basin are just two examples of areas that have undergone, and are projected to 316 

undergo, substantial land conversion in the future (Skole and Tucker 1993, Ranta et al. 1998, 317 

Nepstad et al. 1999).  Although the range maps used in our analyses have been updated and 318 

revised by experts, rapid land conversion in these regions may have recently eliminated some 319 

species from particular grid cells.  Thus, there may be some overestimate of faunal change 320 

due to climate change in these areas of rapid land conversion.  For those species that have not 321 

been recently extirpated, however, the effects of climate change in these areas will likely be 322 

even more profound.  For many species, these changes will result in the loss of potential 323 

future habitat hence limiting potential future distributions.  In addition, for many species, 324 
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fragmented habitats and human land-uses will hinder movement further reducing the ability 325 

of species to shift their distributions in response to climate change. 326 

Our projections may also be conservative if future greenhouse-gas emissions surpass 327 

the levels specified in the three emissions scenarios used in our analyses.  We used the three 328 

emissions scenarios on which the IPCC focused their attention for the CMIP3.  It is possible, 329 

of course, that human activities will result in higher greenhouse-gas concentrations than those 330 

resulting from these three scenarios.  If that were to be the case, we would expect even larger 331 

changes in the distribution of fauna. 332 

  Most notably, however, our projections are likely to be conservative because we 333 

included in our analyses only those species for which we were able to build models that 334 

accurately predicted current ranges.  This restriction generally biased us towards excluding 335 

species with small and fragmented ranges.  These species are likely to be more susceptible to 336 

climate-induced range loss and range contraction due to their restrictive habitat requirements.  337 

Many of the species with the smallest ranges occur in Central America, the Andes, and in the 338 

Atlantic rainforests where our projections also predict major changes in fauna.  Other areas 339 

such as Mediterranean California, the Mexican Tropical Dry Forests, and the southern 340 

Appalachian Mountains of North America were not highlighted by our analyses as areas of 341 

projected high faunal change, but may, nonetheless, experience significant changes due to the 342 

larger numbers small-range endemic species they harbor. 343 

As discussed above, bioclimatic models have their limitations.  Previous studies have 344 

demonstrated that the uncertainties in future range projections attributable to the bioclimatic-345 

modeling process can be even greater than the uncertainties inherent in future climate-change 346 

projections (Thuiller 2004).  There are several ways to reduce this uncertainty.  We chose to 347 

use a consensus-based modeling approach that reduced the model errors that are largely 348 

responsible for differences in bioclimatic-model predictions.  Alternatively, others have 349 
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suggested model ensembles that combine a wider array of modeling approaches (Thuiller et 350 

al. 2005) or combining correlative and mechanistic modeling approaches to produce more 351 

realistic models (Botkin et al. 2007).  Mechanistic approaches hold great promise for more 352 

accurately projecting species future distributions.  However, directly modeling the effects of 353 

climate change on competitive interactions, predator-prey relationships, and other factors that 354 

define species distributions will require much more experimental research in these areas. 355 

There are also a number of limitations associated with the climate simulations that we 356 

have used to project future range changes.  Future climate simulations include uncertainties 357 

that range from differences in how individual AOGCMs are parameterized to stochastic 358 

processes in the climate system that are difficult for models to predict (Giorgi 2005).  359 

Similarly, the greenhouse-gas emissions scenarios also contain many assumptions about the 360 

forces driving emissions, including future population growth rates, economic trends, future 361 

technological advancements, and societal responses to climate change (IPCC 2007).  In our 362 

analyses we used simulations from multiple AOGCMs to include a range of simulated future 363 

climate changes and then assessed areas where multiple simulations produced similar 364 

projected species range changes.  Agreement among AOGCM simulations may be interpreted 365 

as a simple measure of model reliability (Giorgi 2005), but it does not necessarily imply 366 

increased simulation accuracy.   367 

Our analyses map a geography of projected severe faunal change.  Despite the 368 

differences among climate projections, our results indicate that even the lower greenhouse-369 

gas emissions scenarios will likely lead to substantial changes in biodiversity.  We conclude 370 

that as a result of climate change, many areas in the western hemisphere will likely 371 

experience a significant reorganization of their vertebrate fauna over the coming century.  372 

While much discussion of climate impacts has focused on absolute extinction (which is 373 

difficult to predict), faunal change alone is a matter of great concern.  Change of the 374 
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magnitude we predict for many regions in the western hemisphere, even when it includes the 375 

addition of new species to a region, is likely to profoundly alter local ecology and ecosystem 376 

functioning.  The consequences of such highly altered ecosystems represent one of the great 377 

uncertainties climate science needs to begin to address.  378 

 379 
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 544 

 545 

FIGURE LEGENDS 546 

 547 
Figure 1.  Consistent predictions of climate-induced species range losses (a-c), expansions (d-548 

f), and species turnover (g-i) for lower B1 (a, d, g), mid A1B (b, e, h), and mid-high A2 (c, f, 549 

i) greenhouse-gas emissions scenarios.  Each map was created using predictions of faunal 550 

change based on 10 different climate-change projections.  Species-loss values assume no 551 

dispersal of individuals to newly created suitable climatic environments whereas both 552 

expansion and turnover values assume that species will be able to move into expanding 553 

ranges.  Eighty percent of the climate projections (8 of the 10) resulted in losses, gains, and 554 

turnover values greater than the values represented in the maps. 555 

 556 

Figure 2.  Consistent predictions of changes in species composition for the mid A1B 557 

greenhouse-gas emissions scenarios projected for a 100-km by 100-km grid (a) and for a 200-558 

km by 200-km grid (b). Eighty percent (8 of 10) of the future climate projections made for 559 

the A1B emissions scenario resulted in greater changes than the values represented in the 560 

maps.  These maps are directly comparable to Figure 1h that depicts similar projections made 561 

for a 50-km by 50-km grid. 562 

 563 

Figure 3.  Consistent predictions of climate-induced species turnover for three major 564 

vertebrate taxa.  Predictions were made using 10 different climate projections for the A1B 565 

mid-range greenhouse-gas emission scenario.  Eighty percent (8 of 10) of the climate-change 566 
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projections resulted in greater species turnover than the values in these maps.  For the light 567 

grey areas (a), small sample sizes precluded reliable estimates of species-turnover. 568 
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